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Abstract: A Bayesian system identification methodology is presented for 
estimating the crack location, size and orientation in a structure using strain 
measurements. The Bayesian statistical approach combines information from 
measured data and analytical or computational models of structural behaviour 
to predict estimates of the crack characteristics along with the associated 
uncertainties, taking into account modelling and measurement errors. An 
optimal sensor location methodology is also proposed to maximise the 
information that is contained in the measured data for crack identification 
problems. For this, the most informative, about the condition of the structure, 
data are obtained by minimising the information entropy measure of the 
uncertainty in the crack parameter estimates. Both crack identification and 
optimal sensor location formulations lead to highly non-convex optimisation 
problems in which multiple local and global optima may exist. A hybrid 
optimisation method, based on evolutionary strategies and gradient-based 
techniques, is used to determine the global minima. The effectiveness of the 
proposed methodologies is illustrated using simulated data from a single crack 
in a thin plate subjected to static loading. 
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1 Introduction 

The problem of crack detection in structures has received much attention over the years 
because of its profound importance in structural health monitoring. Early detection of 
cracks is a key element for preventing catastrophic failure and prolonging the life of 
structures. Crack identification information can be used for developing cost-effective 
maintenance procedures for structures, improving their safety and reducing their 
maintenance and rehabilitation costs, in a whole-life cost basis. Current inspection 
techniques involve complex, time-consuming procedures, which can be very labour-
intensive and expensive. A fast, low-cost built-in structural health monitoring system 
involving a sensor array along with fast processing techniques is needed to overcome the 
shortcomings of the current inspection techniques. 

Damage detection is generally approached by several techniques. One category of 
them is based on the changes in the global vibrational properties of a structure caused by 
damage (Doebling et al., 1996; Hjelmstad and Shin, 1996; Doebling et al., 1998; Vanik  
et al., 2000; Ihn and Chang, 2004; Mal et al., 2005). However, this approach is only 
effective in dealing with larger defects for the obvious reason that the effects of small 
flaws on the global vibrational properties are often below the noise level in large 
structures. Other techniques use changes in the characteristics of ultrasonic waves 
propagating across existing defects (Giurgiutiou et al., 2001; Lee and Staszewski, 2003; 
Paget et al., 2003). Ultrasonic approaches, although highly effective in detecting very 
small defects, require a dense network of sensors that is impractical to implement in 
larger structures and raises significantly the cost of the equipment. Techniques based on 
strain measurements from optical fibres for identifying cracks have also been pursued 
numerically, analytically and experimentally (Munns et al., 2002; Tsamasphyros et al., 
2003a; Tsamasphyros et al., 2003b). Based on the experimental results (Munns et al., 
2002), this method has been shown to be promising for detecting cracks. Limited studies 
have shown that the method effectiveness depends on the location and number of sensors 
with respect to the crack. This paper investigates the problem of identifying cracks using 
an array of strain measurements. It presents analytical methods and computational tools 
that are required to identify cracks by combining information from strain measurements 
and computational models of the structure. It also addresses the experimental design 
problem related to finding the optimal location, orientation, number and density of 
sensors for reliable detection, along with the computational difficulties involved. 

The objective of the present study is twofold. Firstly, a methodology for the 
estimation of the crack parameters based on a statistical system identification methodology 
is presented. The crack parameters may include crack location, size and orientation.  
Their values are estimated using measured data from a structure subjected to static 
loading. The Bayesian approach to statistical modelling uses probability as a way of 
quantifying the plausibilities associated with the various models and the values of the 
parameters of these models given the observed data (Beck and Katafygiotis, 1998; 
Katafygiotis et al., 1998; Katafygiotis et al., 2000; Christodoulou and Papadimitriou, 
2007). Probability distributions are used to quantify the various uncertainties in the 
values of the crack parameters and these distributions are then updated based on 
information contained in the measured data. The location and size of damage is inferred 
from the most probable values of the crack parameters obtained as the ones that maximise 
the posterior probability distribution of the parameters given the measured data. 
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Secondly, a formulation for the optimal design of sensor configuration for crack 
identification is presented based on the information entropy measure. Previous work 
addressing the issue of optimally locating a given number of sensors in a structure  
has been carried out by several investigators. In particular, information theory  
based approaches (e.g. Kammer, 1991; Kirkegaard and Brincker, 1994; Udwadia, 1994; 
Papadimitriou et al., 2000) have been developed to provide rational solutions to several 
issues encountered in the problem of selecting the optimal sensor configuration. These 
approaches are closely correlated with the problem of identification and damage 
detection using vibrational or modal properties. Herein, the information entropy is used 
to measure the quality of information that can be extracted from the data used to detect a 
crack. The optimal strain sensor configuration (position and orientation of strain sensors) 
is obtained as the one that minimises the information entropy. An important advantage  
of the information entropy measure is that it allows us to make comparisons between 
sensor configurations involving a different number of sensors in each configuration 
(Papadimitriou et al., 2000; Papadimitriou, 2004a). The information entropy is particularly 
useful for trading-off cost of instrumentation with information gained from additional 
sensors about the condition of the structure, thus making cost-effective decisions 
regarding optimal instrumentation. 

The presentation in this work is organised as follows. In Section 2, the crack 
parameter identification methodology is presented for the general case of a cracked 
structure and strain measurements. In Section 3, a formulation for the design of  
the optimal sensor configuration for crack identification based on the information  
entropy measure is presented. Both the crack estimation problem and the optimal sensor 
configuration problem are formulated as highly non-convex optimisation problems. 
Section 4 briefly reviews a hybrid optimisation algorithm combining evolutionary and 
gradient-based algorithms for the estimation of the global optima in both problems  
of crack identification and optimal sensor location. In Section 5, the effectiveness of  
the proposed identification methodology and computational algorithms is illustrated for 
the case of a crack in a thin plate subjected to uniform biaxial tension. The simulated data 
are generated by a computational mechanics problem simulating the behaviour of a 
bounded plate with crack, adding noise in the predictions in order to simulate the effect 
of measurement error. In order to simulate modelling error, the model used to predict  
the strain field is based on analytical solutions for the strain field available for the case  
of infinite plate dimensions. In addition, optimal sensor configurations using the 
proposed computational algorithms are derived and their effectiveness in improving 
crack detectability is explored. Finally, the conclusions are summarised in Section 6. 

2 Bayesian formulation for identifying crack parameters  

Consider one or more cracks on a structure subjected to far field static loading  
(e.g. distributed stress, force, etc.). The objective is to identify the crack locations, sizes 
and orientations using measured data such as strain measurements. For this, a vector of 
parameters ∈ NR θθ  defining the crack locations, sizes and orientations is introduced and 
the problem of crack identification is equivalent to the problem of estimating the value of 
the parameter set θ . 
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Specifically, consider the case of a single crack of length 2a in a bounded plate, 
shown in Figure 1, subjected to biaxial tension. This plate could model a part of a larger 
structure as in Figure 2. Let the crack have an orientation of angle φ  and its centre be 
located at 0 0( , )x y  with respect to a coordinate system. A parameter vector θ  that 
completely defines the crack and is to be identified, involves crack location 0 0( , )x y , 
length 2a and orientation φ  so as { }0 0, , ,= x y aθ φ . In the case of unknown loading,  
far field stresses ,x yσ σ  should be included in θ  so that the parameter set is 

{ }0 0, , , , ,= x yx y aθ φ σ σ . 

Figure 1 Case of a crack of length 2a in a plate subjected to biaxial tension 

 

A Bayesian statistical system identification methodology is used to estimate the values  
of the parameter set θ  and their associated uncertainties using the information  

provided from test data as follows. Let ( )
  0ˆ{ ( , ),   1, , , 1, , }= = =… …m

i iD r i N m Nε β  be 
the measured strain data, where  ir  is the position vector indicating the location of the ith 
measurement, iβ  is the angle indicating the direction of the ith measurement, 0N  is the 
number of sensors in a sensor array and N is the number of datasets available from 
measurements at different time instants. Let Μ  be a class of models parameterised by  
the parameter set θ , simulating the behaviour of the structure with cracks. Let also 
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( ) ( ; ; )m rε β θ  be the response prediction at location r  and direction β  from a model in 
the class Μ  corresponding to a particular value of the parameter set θ . Herein, the 
model class is associated with the solution of the stress and strain field model around a 
crack tip. These solutions can be provided by analytical expressions available for infinite 
plates or can be given from computational finite element models for bounded plates. 
Thus, each model class corresponds to different modelling assumptions that can affect 
the reliability of the methodology for detecting cracks. 

Figure 2 Plate as a part of a larger structure 

 

The measured response and the model response predictions satisfy the prediction error 
equation 

( ) ( ) ( )
      0ˆ ( , ) ( , ; ) ( , ; ), 1, , , 1, ,= + = =… …m m m

i i i i i ir r n r i N m Nε β ε β θ β θ  (1) 

where ( )
  ( , ; )m
i in r β θ  is model prediction error that is due to modelling error  

and measurement noise. The prediction error in the  ir  location with orientation iβ   

is assumed to be a zero-mean Gaussian variable, ( ) 2
  ( , ; ) (0, )∼m
i i in r N sβ θ , with  

variance 2
is . 

According to the Bayesian system identification methodology (Beck and 
Katafygiotis, 1998), the values of crack parameters θ  and the prediction error parameters 

1 2( , , , )= … Ns s s s  are modelled by Probability Density Functions (PDF) that quantify the 
plausibility of each possible value of the crack parameter set θ  and prediction error  
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parameter set s . Applying the Bayes’ theorem and assuming independence of the 
prediction errors, the updating posterior PDF ( , )p s Dθ  of the set of parameters ( , )sθ  
given the measured data D takes the form (Christodoulou and Papadimitriou, 2007): 

( ) 0

01( , | ) exp ( ; ) ( , )
22 ( )

⎡ ⎤= −⎢ ⎥⎣ ⎦N N

N Ncp s D J s s
s

θ θ π θ
π ρ

 (2) 

where 
0

2
10

1 1( , ; ) ( ; )
=

= ∑
N

i
i i

J s D J D
N s

θ θ  (3) 

is the overall weighted measure of fit between measured and model predicted responses 
for all measurement locations, 

( )2( ) ( )
    

1

1 ˆ( ; ) ( , ) ( , ; )
=

= −∑
N

m m
i i i i i

m

J D r r
N

θ ε β ε β θ  (4) 

is the measure of fit between measured and model predicted response at the i measured 

location, 
0

1

( )
=

=∏
N

N
j

j

s sρ  is a scalar function of the prediction error parameter set s , 

( , )sπ θ  is the prior distribution for the parameter sets θ  and s  and 1c  is a normalising 
constant estimated such that the PDF in equation (2) integrates to one. Assuming that θ  
and s  are independent prior to the collection of data, the prior distribution ( , )sπ θ  takes 
the form ( , ) ( ) ( )= ss sθπ θ π θ π , where ( )θπ θ  and ( )s sπ  are the prior distribution for the 
parameter sets θ  and s , respectively. 

Using the total probability theorem, the marginal probability distribution ( | )p Dθ  

for the structural model parameters θ  is given by ( | ) ( , | ) = ∫p D p s D dsθ θ . 

Substituting ( , | )p s Dθ  from equation (2), assuming a non-informative (uniform) prior 
distribution ( )s sπ , and carrying out analytically the integration with respect to s ,  
one obtains the exact result (Beck and Katafygiotis, 1998; Katafygiotis et al., 1998; 
Katafygiotis et al., 2000; Christodoulou and Papadimitriou, 2007) 

[ ]
0 0.5( 1)

2
1

( | ) ( ; ) ( )− −

=

= ∏
N

N
i

i

p D c J D θθ θ π θ  (5) 

where 2c  is a normalising constant ensuring that the PDF in equation (5) integrates to 
one. The updated PDF ( | )p Dθ  describes completely the uncertainty in the parameter 
set θ  given the data. In the next section, the updated PDF will be used for designing the 

optimal sensor configuration. The optimal value ôptθ  of the parameter set θ  is obtained 
by maximising ( | )p Dθ  in equation (5). Equivalently, using equation (5), and assuming 

a uniform prior distribution for θ , the optimal value ôptθ  is given by: 

0

ˆ arg min ( ; )=opt
N

I Dθ θ  (6) 
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where ( ; )I Dθ  is given by: 

0

1

( ; ) ln ( ; ).
=

= ∑
N

i
i

I D J Dθ θ  (7) 

In the special case for which 
01 2= = =… Ns s s , i.e. the values of the prediction error 

parameters are assumed to be the same, independently of the measured location,  
the updated PDF ( | )p Dθ  of the model parameters θ  takes the form as below: 

0( 1) / 2
3( | ) [ ( , 1; )]− −= N Np D c J Dθ θ  (8) 

while the optimal value ôptθ  of the parameter set θ  is given by equation (6) with ( ; )I Dθ  
given by: 

0

1

( ; ) ( ; ).
=

= ∑
N

i
i

I D J Dθ θ  (9) 

The crack identification problem has been formulated for the case for which only one 
crack exists in the region of interest. For the case of searching for multiple cracks in the 
region of interest, one should reformulate the problem as a model class selection problem 
from a family of model classes 1, ,= … ci n . The ith model class in the family corresponds 
to a model with i cracks in the region of interest. The Bayesian methodology for model 
class selection (Beck and Yuen, 2004; Papadimitriou, 2004b) can be used in this case  
to identify the optimal model class that fits the sensor data. This optimal model class  
is indicative of the number of cracks that exist in the region of interest. Bayesian 
methodology for parameter estimation can then be used for the optimal model class to 
estimate its model parameters and thus identify the locations and sizes of these cracks. 

3 Optimal sensor location methodology 

3.1 Information entropy 

The updated PDF ( )|p Dθ  in equation (5) specifies the plausibility of each possible 
value of the crack parameters. It provides a spread of the uncertainty in the parameter 
values based on the information contained in the measured data. A unique scalar measure 
of the uncertainty in the estimate of the crack parameters θ  is provided by the 
information entropy, defined by Papadimitriou et al. (2000): 

( ) ( ) ( ) ( ), ln ln  ⎡ ⎤= − = −∫⎣ ⎦H D E p D p D p D dδ θ θ θ θθ  (10) 

where Eθ  denotes mathematical expectation with respect to θ , and 03∈ NRδ  is the 
sensor configuration vector, with elements the sensors’ coordinates and orientations.  
The information entropy depends on the available data ( )≡D D δ  and the sensor 
configuration vector δ . 



   

 

   

   
 

   

   

 

   

    S. Gaitanaros et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

An asymptotic approximation of the information entropy, valid for large number of 
data ( 0 →∞NN ), is available (Papadimitriou, 2004a) which is useful in the experimental 
stage of designing an optimal sensor configuration. The asymptotic approximation is 
obtained by substituting equation (5) into equation (10) and observing that the resulting 
integral can be rewritten as Laplace-type integrals which can be approximated by 
applying Laplace method of asymptotic expansion (Bleistein and Handelsman, 1986). 
Specifically, it can be shown that for a large number of measured data, i.e. N0N→ ∝,  
the following asymptotic results hold for the information entropy (Papadimitriou, 2004a): 

1 1ˆ ˆˆ ˆ( , ) ( ; , ) ln(2 ) ln[det ( ; , )]
2 2

∼ = −H D H s N Q sθδ δ θ π δ θ  (11) 

where ˆ ˆ( , ) arg min ( ; )≡ =D I D
θ

θ θ δ θ  is the optimal value of the parameter set θ  that 

minimises the measure of fit ( ; )I Dθ  given in equation (7), ( ; , )Q sδ θ  is an ×N Nθ θ  
positive semi-definite matrix of the form: 

0
( )

2
1

( ; , ) ( )
=

= ∑
N

j j

j j

Q s P
s
δ

δ θ θ  (12) 

known as the Fisher information matrix (Udwadia, 1994) and containing the information 
about the values of the crack parameters θ  based on the data from all measured positions 

specified in δ , while 2ˆ js  are the optimal prediction error variances given by 2 ˆˆ ( )=j js J θ . 

The matrix ( ) ( )jP θ  in equation (12) is a positive semi-definite matrix given by: 

( ) ( )( )
    

1

1( ) ( , ; ) ( , ; )
=

= ∇ ∇∑
N

m mj T
j j j j

m
P r r

N θ θθ ε β θ ε β θ  (13) 

containing the information about the values of the parameters θ  based on the data  
from one sensor placed at the location  jr  and having orientation jβ , where 

1

⎡ ⎤∂ ∂
∇ = ⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
"

T

Nθ

θ θ θ
 is the usual gradient vector with respect to the parameter set θ . 

The matrix ( ) ( )jP θ  depends only on the response of the optimal model at the 
measurement location j, while it is independent of the sensor configuration vector δ . 

The computation of the gradients of the strains in equation (13) depends on the type 
of the model class used to predict the strains in the structure. For model classes that use 
analytical expressions to relate the strains with the model parameters θ , the gradients of 
the strains are readily computed analytically. For model classes that use finite element 
models to compute the strains in the structure, the gradient of the strains are based on 
finite difference approximations. 

It should be noted that the resulting asymptotic value of the information entropy, 
given in equation (11), does no longer depend explicitly on the measured response  
data D. The only dependence of the information entropy on the data comes implicitly  
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through the optimal values 
ˆ ˆ( , )≡ Dθ θ δ  and 

0

2
1

ˆ ˆˆ [ ( ; ), , ( ; )]= … Ns J D J Dθ θ . Consequently, 

the information entropy is completely defined by the optimal value θ̂  of the model 
parameters and the optimal prediction error ŝ  expected for a set of test data. 

3.2 Design of optimal sensor configuration 

In damage detection techniques, the aim is to design sensor configurations such that  
the resulting measured data are most informative about the model parameters. Since  
the information entropy, introduced in equation (10) as a measure of the uncertainty in 
the crack parameters, gives the amount of useful information contained in the measured 
data, the optimal sensor configuration is selected as the one that minimises the 
information entropy (Papadimitriou et al., 2000). That is, 

ˆ ˆarg min ( ; , ).=best H s
δ

δ δ θ  (14) 

However, in the initial stage of designing the experiment, the data are not available and 
thus an estimate of the optimal crack parameters θ̂  and ŝ  cannot be obtained from 
analysis. In order to proceed with the design of the optimal sensor configuration, this 
estimate has either to be assumed or its uncertainty has to be accounted for. In practice, 
the optimal sensor configuration designs are based on user-selected nominal values of the 
optimal model parameters θ̂  and ŝ  that are representative of the structure under study. 
It is worth pointing out that, as a result of the asymptotic approximation of the 
information entropy, the selection of the optimal sensor configuration is based solely on a 
nominal model, ignoring details from the measured data that are unavailable in the initial 
stage of experimental design. 

3.3 Prediction error variance model 

An analysis of the prediction error variance 2
0, 1, ,= …is i N  is next presented. For the 

prediction error induced in equation (1), it holds that 
( ) ( )

  mod     0( , ; ) ( , ; ) ( , ; ), 1, , , , 1, ,= + = =… …m m
i i el i i meas i in r n r n r i N m Nβ θ β θ β θ  (15) 

where mod   ( , ; )el i in r β θ  accounts for the model error and ( )
  ( , ; )m

meas i in r β θ  accounts for the 
measurement error. Assuming independence between the measurement error and model 
error, the variance 2

is  of the total prediction error is given in the form: 

2 2 2
,meas ,model= +i i is s s  (16) 

where 2
,measis  is the variance of the measurement error and 2

,modelis  is the variance of  
the model error. In order to proceed with the optimal sensor configuration design,  
the designer has to assume values for the individual variances in equation (16).  
Such assumptions may depend on the nature of the problem analysed. Most studies on 
optimal sensor location assume that the variance of the measurement and model errors 
are constant, independent of the response. However, in the crack problems considered in 
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this study, it may be reasonable to assume that the variance of the model error is 
proportional to the response. In addition, the response may be extremely sensitive to very 
small variations of the measurement location as in the case of measuring strains close to 
the crack tip. Specifically, due to 1/ r  variation of the strain distribution, where r is the 
distance from the crack tip, small variations in the sensor location, due to inaccurate 
sensor location, may result in extremely high variations in the response close to the crack 
tip. Thus, the sensitivity of the measured response to sensor location may play an 
important role in defining the measurement and model error. To properly account for 
these variations, it is reasonable to assume that the error is a function of the sensitivity  
of the response to variations in the sensor positions. Usually this error and the 
corresponding prediction error variance may be considered to be a function of the 
measured response or its spatial derivatives. 

Adding all these errors together, one can derive the following expression for the 
variance of the prediction error: 

2 2 2 2 2
0   ( , ; ) ( )= + +

ii r i is c c q r c qβ θ  (17) 

where the first term accounts for constant errors, independent of the response, the second 
term accounts for prediction errors that depend on the strength   ( , ; )i iq r β θ  of the 
response predicted by the model and the third term accounts for prediction errors that 
depend on the details of the response   ( , ; )≡ i iq q r β θ . Further analysis and estimation  
of this variance for the specific case of a single crack in a thin plate is presented in 
Section 5. 

4 Optimisation – computational issues 

4.1 Hybrid optimisation algorithm 

The optimisation problems (6) and (14), related to the estimation of the crack parameters 
and the estimation of optimal sensor configuration, result in multiple global/local optima. 
Conventional gradient-based local optimisation methods are unable to handle efficiently 
multiple local optima and may present difficulties in estimating the global minimum. 
They lack reliability in dealing with the optimisation problem since convergence to the 
global minimum is not guaranteed. Evolutionary algorithms (Beyer, 2001) are more 
appropriate and effective to use in such cases. Evolutionary algorithms are random search 
algorithms that explore better the parameter space for detecting the neighbourhood of the 
global optimum. They are based on a randomly initialised population of search points in 
the parameter space, which by means of selection, mutation and recombination evolves 
towards better and better regions in the search space. Details on theoretical developments 
of Evolution Strategies (ES) can be found in Beyer (2001). A disadvantage of ES is their 
slow convergence in the neighbourhood of the global optimum since they do not exploit 
the gradient information. For this, a hybrid optimisation algorithm is used that exploits 
the advantages of evolutionary and gradient-based methods. Specifically, an ES is first 
used to explore the parameter space and detect the neighbourhood of global minimum. 
Then the method switches to a gradient-based algorithm starting with the best estimate 
obtained from the evolutionary algorithm and using gradient information to accelerate 
converge to the global optimum.  
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Due to the random nature of the initial population used in ES, the proposed hybrid 
optimisation algorithm is effective in determining multiple global minima by running the 
algorithm several times and storing the optimal solution of each run into an optimal set of 
solutions. Depending on the initial population in each run, the algorithm may converge  
to a different global optimum in the parameter space. As the number of runs increases,  
the optimal set of solutions usually contains all optima solutions for the problem. 

4.2 Heuristic algorithm for optimal sensor configuration 

A more systematic and computationally very efficient approach for obtaining a good 
sensor configuration for a fixed number of 0N  sensors is to use a Sequential Sensor 
Placement (SSP) algorithm as follows. The positions of 0N  sensors are computed 
sequentially by placing one sensor at a time in the plate, starting with a minimum number 
of minN  sensors, at a position and orientation that results in the highest reduction  
in information entropy. The minimum number of sensors minN  used is the one that 
corresponds to an identifiable crack parameter set. This is investigated through the 
determinant of the matrix Q in equation (12), since when det( ) 0→Q  then the number of 
sensors used is not enough to create an array of sensors whose measurements will result 
in an identifiable model. So the positions of the first minN  sensors are chosen as those 
that give the highest reduction in the information entropy for minN  sensors. Given the 
optimal positions of the first minN  sensors, the position of the next sensor is chosen as the 
one that gives the highest reduction in the information entropy computed for ( )min 1+N  
sensors with the positions of the first minN  sensors fixed at the optimal ones already 
computed in the first step. Continuing in a similar fashion, given the positions of 

( )1  1min− ≥ +i i N  sensors in the structure computed in the previous 1−i  steps, the 

position of the next ith sensor is obtained as the one that gives the highest reduction in 
the information entropy for i sensors with the positions of the first 1−i  sensors fixed at 
the optimal ones already obtained in the previous 1−i  steps. This procedure is continued 
for up to 0N  sensors. This algorithm is referred to as the SSP algorithm and has been 
first introduced in Papadimitriou (2004a) to handle the discrete optimisation problem. 
The SSP algorithm, when applied to discrete-variable optimisation problems, was shown 
to give sensor configurations with corresponding information entropies that are extremely 
close to the minimum information entropy. Its effectiveness to continuous-variable 
optimisation problem arising in the present study will be investigated in the applications 
section. 

5 Applications 

The effectiveness of the proposed methodology is demonstrated using simulated strain 
measurements ε̂  for the mode I crack problem of Figure 3. In particular, we consider a 
cracked rectangular plate with sides of length Lx and Ly, under equal biaxial far field 
tension ∞ ∞= =xx yyσ σ σ , where the x- and y-axes of the coordinate system used are parallel 



   

 

   

   
 

   

   

 

   

    S. Gaitanaros et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

to the sides of the plate (Figure 3). The through-the-thickness-crack is assumed to be 
straight, its size is 2a, its centre is located at ( )0 0,x y  and its orientation is defined by the 
angle φ  relative to the x-axis, as shown in Figure 3. 

Figure 3 Case of a crack of length 2a in a bounded plate subjected to uniform  
biaxial tension at far field 

 

Since there are no experimental data available, simulated measured data are generated 
from a finite element model of the corresponding problem created with COMSOL 
Multiphysics (COMSOL AB) for the various crack configurations assumed and for 
specimen size = =x yL L ea . Zero-mean Gaussian white noise errors are added to the 
finite element model results in order to simulate the effect of measurement error. So the 
‘measured data’ ε̂  are generated as follows: 

( )ˆ 1= +FEMε ε η  (18) 

where FEMε  are the strain values obtained from the finite element model for a given 
value of e, and η  is a Gaussian variable with zero mean and standard deviation s. 

In the results presented, the material properties are Young’s modulus 70GPa=E  
and Poisson ratio 0.33=v . In all cases examined, the simulated data were generated for 
these values of material properties and the following values of crack parameters: position 
of crack 0 0.06,=x 0 0.06=y , half crack length 0.005=a  and crack orientation 0=φ . 
The modelled plate was subjected to uniform far field biaxial stress 100MPa=σ . 
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Model predictions of the strain field ( , )x yε  near and far from the crack tip are 
provided for various crack configurations by an analytical solution (Broek, 1984) 
available for this stress state and valid for an infinite plate. These predictions are accurate 
for practical applications, provided that the dimensions xL  and yL  are much larger than 
the crack length, i.e. for values of 10�e . 

Specifically, the stress field for an infinite plate can be determined as below: 
Re Im Im '
Re Im Im '

Im Re

′ ′

′ ′

′ ′

= −

= +

′= −

x x

y y

x y

Z z Z
Z z Z

z Z

σ
σ

σ

 (19) 

where ′ ′i jσ  are stress components relative to an ( ),′ ′x y  Cartesian coordinate system with 

origin at the centre of the crack ( )0 0,x y  and with the ′x - and ′y -axes along and normal 

to the crack as shown in Figure 3, ′ ′= +z x i y  is a complex variable, 1= −i  the 
imaginary unit, ( )Z z  the Westergaard stress function defined by: 

( )
2 2

=
−

zZ z
z a

σ , (20) 

and /′ =Z dZ dz . For plane stress conditions, the corresponding strains are given by: 

1 1Re Im Im '

1 1Re Im Im '

1 Im Re

′ ′

′ ′

′ ′

− +
= −

− +
= +

+ ′= −

x x

y y

x y

v vZ z Z
E E

v vZ z Z
E E

z Z
E

ε

ε

νε

 (21) 

where E is Young’s modulus and v is Poisson’s ratio. The strain components with respect 
to the original −x y  coordinate system are given by the well-known transformation 
formulae: 

cos 2 sin 2
2 2

cos 2 sin 2
2 2

cos 2 sin 2
2

′ ′ ′ ′ ′ ′ ′ ′
′ ′

′ ′ ′ ′ ′ ′ ′ ′
′ ′

′ ′ ′ ′
′ ′

+ −
= + −

+ −
= − +

−
= +

x x y y x x y y
xx x y

x x y y x x y y
yy x y

x x y y
xy x y

ε ε ε ε
ε φ ε φ

ε ε ε ε
ε φ ε φ

ε ε
ε ε β φ

 (22) 

where φ  defines the orientation of the crack relative to the x-axis, as shown in Figure 3. 
Finally, the normal strain component in the direction defined by the angle β  relative to 
the x-axis (Figure 3) is determined as below: 

( ) ( )

cos 2 sin 2
2 2

cos 2 sin 2 .
2 2

′ ′ ′ ′ ′ ′ ′ ′
′ ′

+ −
= + + =

+ −
= + − − −

xx yy xx yy
xy

x x y y x x y y
x y

ββ

ε ε ε ε
ε β ε β

ε ε ε ε
φ β ε φ β

 (23) 
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Also, the ‘local’ coordinates ( ),′ ′x y  are related to the ‘global’ coordinates ( ),x y  as follows: 

( ) ( )
( ) ( )

0 0

0 0

0

0

cos sin

sin cos
or

cos sin
sin cos .

′ = − + −

′ = − − + −

′ ′= + −
′= + +

x x x y y

y x x y y

x x x y
y y x y

φ φ

φ φ

φ φ
φ φ

 (24) 

The two different models, the computational model used for simulating measured strain 
data from a bounded square plate with dimensions = = =x yL L L ea , and the analytical 
model used for predicting the strain field of an infinite plate structure, are purposely 
chosen to introduce modelling error which is always present in structural modelling.  
One of the purposes of the analysis is to investigate the effect of modelling error on the 
effectiveness of identification methodology. The size of modelling error depends on the 
value of the variable e. The smaller the value of e, the less accurate the analytical solution 
is for describing the strain field in a bounded plate, and the higher the size of modelling 
error. 

It should be noted that the current application is based on a simple structural/crack 
configuration and far field stress state for which analytical results from a model are 
available to approximately predict the stresses/strains in the structure. In the case of 
structural/crack configurations or far field stress states for which analytical results are not 
available, the predictions of the stresses/strains throughout the structure should be based 
on numerical models such as finite element models. In this case, efficient computational 
tools need to be developed to handle the prediction of the strains in the structure using 
the numerical model under various crack locations, sizes and orientations. The involved 
computational procedures are expected to significantly increasing the computational time 
required for crack identification. Moreover, the gradients of the strains needed in 
optimising the objective function (7) or (9) and also for computing the formula (13) 
should be estimated in this case using finite difference approximations. 

5.1 Existence of multiple local/global optima 

In order to demonstrate the existence of multiple local optima, and therefore the necessity 
of an efficient global optimisation algorithm, we consider the case of small model error 
( 100=e ), no measurement error ( 0%=η ) and known far field stresses so as the 
parameters to be identified in this case are the crack location 0 0( , )x y , half crack length a 
and crack orientation φ . Figure 4 shows the contour plots of the measure of fit in (3),  
as a function of the crack position 0x  and 0y , holding the values of the other parameters  
a and φ  constant. A grid of 18 sensors was used to measure strains ,x yε ε  in  
nine locations, as shown schematically in Figure 5. It is observed from this figure that a 
highly nonlinear, non-convex, objective function is obtained which involves multiple 
local optima. It should be noted that the number of local optima depends in general on 
the number and locations of sensors placed in the structure. The global optimum is in the 
area around 0.6,=x  0.6=y . A gradient-based optimisation method with an initial 
estimate chosen in one of the neighbourhoods of the local optima will fail to converge to 
the global optimum, leading to a sub-optimal solution corresponding to a local optimum. 
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Figure 4 Contour plots of the total mean-square prediction error as a function of  
the coordinates x, y of the crack centre (see online version for colours) 

 

Figure 5 Crack identification using strain measurements ,x yε ε  at nine locations and  

considering small model error ( 100=e ) and measurement error 2%=η  
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The proposed hybrid optimisation algorithm is shown to be effective in avoiding local 
optima and locating the global one. Evolutionary algorithms are used in these cases in 
order to estimate the neighbourhood of the global optimum, and then the algorithm  
is switched to a gradient-based optimisation algorithm that can converge quickly to  
the global optimum. It should be noted, however, that in order to find the neighbourhood 
of the global optimum, evolutionary algorithms require a relatively large number  
of function evaluations and this makes the proposed approach computationally  
time-consuming. 

5.2 Sensitivity to model error 

Next, the effect of model error on the effectiveness of the methodology is investigated. 
For this, the crack detection problem is considered for the following cases: (1) the case  
of plate dimensions 100=L a  corresponding to small model error ( 100)=e , (2) the case 
of plate dimensions 10=L a  corresponding to medium model error ( 10)=e  and (3) the 
case of plate dimensions 7=L a  corresponding to large model error ( 7)=e . The 
respective sizes of model error are due to the fact that the analytical solutions used to 
predict the strain field in the identification method hold only for infinite dimensions and 
tend to be inaccurate as the ratio / =L a e  decreases. An additional 2%=η  noise in the 
measurements is assumed. The crack identification results for the case 100=L a  were 
already shown in Figure 5. Results for the cases of 10=L a  ( 10)=e  and 7=L a  ( 7)=e  
are shown in Figures 6 and 7, respectively. The optimal values of the parameter set θ  are 
given in Table 1 for the three cases considered. From the results in Table 1, we observe 
that the increase of the model error from 100=e  to 7=e  results in a certain loss of 
accuracy in the identified parameters. Specifically, for medium model error ( 10)=e  
there is a 7% relative error in the estimation of cracks half-length, while in the case of 
large model error ( 7)=e  there is a 12% relative error in the estimation of the size of  
the crack combined with an error of 3% in the estimate of cracks location. Also,  
the orientation of the crack predicted by the methodology is slightly missed by 
approximately 3°– 4° . It should be noted that the estimates deteriorate as the model 
error increases or, equivalently, the value of e decreases. The results in Table 1 
demonstrate that the proposed methodology can efficiently detect a crack in a thin plate, 
and estimate with sufficient accuracy its size and orientation, as well as the unknown 
load to which the plate is subjected to. 

5.3 Parametric analysis 

The limits on which this methodology tends to or completely fails to identify the crack 
are examined next. These limits depend on several parameters such as the sensor 
configuration, the density of the sensors array with respect to the crack location and size, 
the measurement direction of the strain sensors, the orientation of the crack, etc. The 
following analysis investigates the effect of these parameters on the accuracy of the 
identification algorithm. 
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Figure 6 Crack identification using strain measurements ,x yε ε  at nine locations and  

considering medium model error ( 10=e ) and measurement error 2%=η  
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Figure 7 Crack identification using strain measurements ,x yε ε  at nine locations and  

considering large model error ( 7=e ) and measurement error 2%=η  
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Table 1 Identification results for small, medium and large model errors  
corresponding to e = 100, 10 and 7, respectively 
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First, let γ  be the distance of the sensor locations in the 3 3×  uniform grid of sensors 
measuring xε  and yε , shown in Figure 8. We introduce the parameter 1 /=p aγ , where 
a is the half crack length, and examine the relative errors in the estimation of crack 
parameters for different values of 1p . 

Figure 8 Geometric representation of sensor locations with respect to crack ( =γ distance 
between sensors, =cx distance from crack to centre sensor, a = half crack length and 

=β  measurement direction of strain sensor) 

 

In all results shown next, we consider the case of small model error 100=e  and 
measurement error 2%=η . The far field uniform stress σ  is considered to be unknown 
and it is part of the parameter set θ  to be identified from the methodology. 

In Figure 9, the relative error in the estimation of the cracks location and size  
for larger values of 1p  is presented. For 1 5<p , values not shown in Figure 9, the 
methodology identifies accurately all crack parameters. It is observed that for 1 10=p  the 
methodology has failed to detect the crack since the relative error in the coordinates 
estimation reaches a value of 50% in addition to a 13% relative error in determining the 
half crack length. It must be noted here that even in this case, the crack orientation φ  and 
the far field stresses σ , not shown in Figure 7, were accurately estimated. 
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Figure 9 Relative errors in the estimation of 0x , 0y  and a as a function of 1p   
(see online version for colours) 
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Of great importance is also the method’s dependence on the crack location and especially 
its distance from the central sensor with respect to the cracks size. For this reason, we 
consider the parameter 2 /= cp x α , where cx  is the distance of the crack centre from the 
central sensor along the x-axis, as shown in Figure 8. Values of the relative errors in the 
estimated values of cracks location coordinates 0x , 0y  and half crack length a are 
presented in Figure 10 for value of the ratio 1 / 5= =p aγ . It is observed that as the crack 
moves far from the central sensor, errors in the crack location estimation slightly increase 
while there is a larger error of about 9% in the estimated half crack length. For larger 1p  
values, these errors tend to increase. For 2 4≥p , the crack approaches the sensors 5  
and 6 and these errors decrease with the accuracy of the methodology to improve 
significantly. 

In all results presented before, an array of sensors measuring strains in x,  
y direction was used, while the crack had an orientation 0= °φ . This means that strain 
measurements were obtained simultaneously in parallel and perpendicular directions  
with respect to the cracks orientation. We examine next the case where nine instead  
of 18 sensors are used to measure strains in a direction β , while the crack has an 
orientation 0=φ , as shown in Figure 8. Two cases are examined corresponding to values 

0=β  and / 2=β π . The value of 0=β  corresponds to the case where the strain 
measurements are parallel to the crack, while the value of / 2=β π  corresponds to  
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strain measurements perpendicular to the crack. Identification results are examined as a 
function of 1p . A comparison of the relative errors on the estimation of cracks location 
coordinates 0x  and 0y  for the two values of the parameter β  is presented in Figure 11. 
It is clear that when measuring strains in a direction parallel to the crack, the 
methodology fails to estimate crack parameters for smaller values of the ratio 1 /=p γ α  
than the case of strains obtained perpendicular to the crack. This conclusion will be 
reinforced by the results of the optimal sensor location methodology shown next, where 
for the crack orientation 0= °φ  the methodology results in an optimum measurement 
direction / 2=β π  or 3 / 2π  for all sensors. 

Figure 10 Relative errors in the estimation of 0x , 0y  and a as a function of 2p   
(see online version for colours) 
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5.4 Optimal sensor configurations 

Next we estimate the optimal sensor configuration for a given number of sensors using 
the theoretical analysis presented in Section 3. Two cases A and B are considered.  
In Case A, the variables to be estimated are the locations of strain sensors measuring xε  
and yε  in a measurement location, so the search of the optimal sensor configuration for n 
sensors corresponds to / 2n  optimal locations. In Case B, one sensor is placed at each 
location measuring the strain at a direction β . Thus, the variables to be estimated  
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in the search of the optimal configuration include the location and the direction of 
measurements as well. In this case, the sensor configuration vector 03∈ NRδ  includes not 
only coordinates of each sensor, but angles β  of measurement direction as well. 

Figure 11 Relative errors in the estimation of 0x  for 3 / 2=p π  and 3 0=p   
as a function of 1p  (see online version for colours) 
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5.4.1 Selection of the prediction error 

The estimation of the optimal sensor configuration depends on the selection of the 
prediction error parameters involved in the prediction error equation (17). In all results 
presented here, the value of the prediction error variance 2

is  is chosen as follows. 
First we will define the third term in prediction error equation (17) that depends on 

the nature of the response. For the strain ε  near the crack tip, it holds 

( , , )
=∼ Ia K E va

r r
ε  (25) 

where r  is the distance from the crack tip, IK  is the stress intensity factor, E is Young’s 

modulus and v is Poisson’s ratio. Due to the 1/ r  variation of the strain distribution, 
small variations in the sensor location may result in extremely high variations in the 
response close to the crack tip. To properly account for these extreme variations, it is 
reasonable to assume that the error is a function of the response’s spatial derivatives  
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with respect to r. Considering an inaccurate sensor placement of about Δr , using 
equation (25), and selecting the standard deviation of the error to be proportional to the 
local change Δε  of the strain, the measurement error’s standard deviation is as below: 

.
2

⎛ ⎞
Δ ≈ ⋅Δ = ⋅Δ = − ⋅Δ⎜ ⎟

⎝ ⎠
∼meas

d d a as r r r
dr dr r r r
εε  (26) 

Substituting (26) into the general form of the measurement error’s variance equation (17) 
and neglecting the first term (constant errors), the model prediction error variance is 
given by: 

2
2 2 2 2

model 2
⎛ ⎞

= ⋅ + ⋅Δ⎜ ⎟⋅ ⋅⎝ ⎠
r r

as s r
r r

ε  (27) 

where models  and Δr  are user-selected values. 
Near the crack tip ( 0→r ), the second term in equation (27) dominates the overall 

prediction error variance, while far from the crack tip it is the first term in equation (27) 
that dominates the prediction error variance. The extent of these regions of domination 
depend on the value of the ratios model /Δs r . Herein, in all results presented, this ratio is 
selected, for demonstration purposes, to be model / 0.5Δ =s r . 

5.4.2 Results of optimal sensor locations and information entropy for Case A 

First, the Case A is considered with two strain sensors at an optimal location measuring 
strains xε  and yε . A comparison between two different optimal sensor configurations 
using six sensors is made in Figure 12. The first one (red cross) corresponds to sensors 
providing information about the crack parameter set { }0 0, , ,= x y aθ φ , while the other 
one (blue cross) corresponds to sensors providing information about the crack parameter 
set { }0 0, , , ,= x y aθ φ σ  including the unknown far field stress σ  as well. As expected, 
the sensor configuration that provides information about the additional unknown far field 
stress parameter contains sensors that are located in relatively larger distance from the 
crack tip. 

In all results shown next, the optimal sensor configurations correspond to sensors 
providing information about the crack parameters set { }0 0, , , ,= x y aθ φ σ . The optimal 
sensor configurations for Case A are illustrated in Figures 13 (a–d) for 6, 8, 10 and  
12 sensors, respectively. These configurations were estimated using the hybrid 
optimisation algorithm for optimising the information entropy. Comparing the two 
different optimal sensor locations shown in Figures 12 and 13(a) for six sensors, it can  
be clearly seen that there are more than one global solution to the optimal sensor 
configuration problem that are symmetric with respect to the central axis perpendicular to 
the crack. The application of the hybrid optimisation algorithm converges to one of the 
global solutions. Repeating applications of the hybrid optimisation algorithm will 
eventually result in the estimation of all global solutions that exist due to the symmetry of 
the problem. Thus, it should be noted that the results shown in Figures 13 (a–d) for 6, 8, 
10 and 12 sensors correspond to one of the multiple global solutions existing due to 
symmetry. 
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Figure 12 Comparison of optimal sensor locations providing information about the crack 

parameter set { }, , ,0 0= x y aθ φ  (red cross) and { }0 0, , , ,= x y aθ φ σ  (blue cross)  

(see online version for colours) 
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Figure 13 Optimal sensor locations for (a) 6, (b) 8, (c) 10 and (d) 12 sensors  
(see online version for colours) 
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The SSP algorithm also provides optimal sensor configurations with a minimum 
computational effort and little loss of information. A comparison between the information 
entropy of the optimum configurations estimated with the hybrid optimisation algorithm 
and the corresponding ones estimated with the SSP algorithm is shown in Figure 14.  
The estimates from the direct exact algorithm and the approximate SSP algorithm are 
very close, validating the very good accuracy of the SSP algorithm. 

Figure 14 Minimum information entropy vs. the number of sensors for the cases of  
hybrid optimisation and SSP algorithm (see online version for colours) 

 

5.4.2.1 Existence of multiple global/local optima 

Consider again the estimation of the optimal sensor location of 12 sensors measuring in 
xε  and yε  directions. Let the five optimal locations to be known using the direct hybrid 

optimisation method. The SSP algorithm is used to find the sixth location for the 11th 
and the 12th sensor. The contour plots of the information entropy as a function of the 
coordinates x and y of the sensor location is illustrated in Figure 15. It is seen that at least 
eight local optima exist. The sixth global optimal location found with the SSP method is 
shown with the cross. It is clear that the optimisation method for estimating the sixth 
optimal sensor location should be able to identify the global optimum from the total of 
eight global/local ones. Thus, the proposed hybrid optimisation algorithm is required to 
be used since it can locate global optima in the expense of high computational effort. It is 
worth pointing out that even with the SSP algorithm, the use of the hybrid optimisation is 
necessary. This increases significantly the computational time for estimating the optimal 
sensor configurations. 
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Figure 15 Contour plots of the information entropy as a function of the sensor  
location coordinates 6x  and 6y  (see online version for colours) 

 

5.4.2.2 Uncertainty in crack parameter estimates 
Consider the case of an optimal sensor configuration of 12 sensors for Case A and a 
corresponding arbitrary grid, as shown in Figure 16. The arbitrary grid is chosen 
purposely to be closest to the crack. Crack identification results are carried out with  
these two sensor configurations and the probability distribution ( | )p Dθ  of the crack 
parameters is obtained. Simulated data were generated from a finite element model of a 
plate with dimension 100=L a  and measurement error 2%=n  was added to the 
computed strains. Figures 17 and 18 show the contour plots of the probability distribution 

1( | ) / ( )p D c θθ π θ  of the parameter set θ  as a function of the crack parameters 0x  and a, 
holding the rest of the crack parameters 0y , φ  and stress σ  constant. The global 
optimum is in the area around 0 0.5,=x  0.05=a  and corresponds to the chosen values 
of these parameters in the finite element model that generated the measured data ε̂ . 

The probability distribution in Figure 17 corresponds to the optimal sensor 
configuration, while the probability distribution in Figure 18 corresponds to the arbitrary 
grid of sensors used. It is observed from these figures that in spite of the grid of sensors 
chosen to be closest to the crack, the use of an optimal sensor configuration resulted in a 
narrower distribution, especially in the direction of 0x , compared to the much wider 
distribution obtained from the arbitrary grid. This demonstrates that the uncertainty in the 
parameter values, quantified by ( | )p Dθ , is less for the optimal configuration than it is 
for an arbitrary grid of sensors. Consequently, the data obtained from the optimal sensor 
configuration contain more information for identifying the model parameters than the 
data obtained from the arbitrary grid of sensors. 
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Figure 16 Optimal and arbitrary sensor configurations for the case of 12 sensors  
(see online version for colours) 
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Figure 17 (a) Contour plots of probability distribution as a function of the crack centre 0x  and the 
crack’s half-length a, and (b) zoom in the neighbourhood of the optimum, for the case 
of optimal sensor configuration (see online version for colours) 
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Figure 18 (a) Contour plots of probability distribution as a function of crack centre 0x  and the 
crack’s half-length a and (b) zoom in the neighbourhood of the optimum, for the case of 
an arbitrary grid of sensors (see online version for colours) 
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5.4.3 Results of optimal sensor configuration and  
information entropy for Case B 

Next, results for the Case B are obtained. The optimal sensor configurations for 6, 8, 10 
and 12 sensors are illustrated in Figures 19 (a–d). In this case, the direction in which 
sensors are placed to measure strains is not prespecified. Instead, it is considered as a 
variable to be optimised. For this case where the direction β  of strain measurements  
is optimised, the problem of finding the global optima for both sensor location and  
the measurement angle becomes computationally more difficult. Results showed that the 
optimal angle of measurement for all sensors is / 2=β π  or 3 / 2π . 

The minimum values of the information entropy as a function of the number of 
sensors placed at the optimal location in the structure are compared in Figure 20  
for Cases A and B. In case B, all sensors placed at optimal locations measure strains  
in optimal direction that corresponds to / 2=β π  or 3 / 2π . Case B results in 
configurations with less information entropy, i.e. providing more informative data than  
in Case A, for the same number of sensors used in both cases A and B. 
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Figure 19 Optimal sensor locations for (a) five, (b) six, (c) seven and (d) eight sensors.  
Optimal measurement direction / 2=β π  or 3 / 2π  for all sensors (see online version 
for colours) 
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Figure 20 Minimum information entropy vs. the number of sensors for cases A (red) and  
B (blue) (see online version for colours) 
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6 Conclusions 

A methodology was presented for the estimation of cracks in structures using strain 
measurements. A Bayesian system identification methodology was used to estimate the 
location, size and orientation of cracks using the information provided from strain 
measurements of a cracked thin plate subjected to uniform stress. The analysis showed 
that the proposed identification methodology can efficiently detect and completely 
identify an existing crack and far field stresses using a simple grid of sensors, even in  
the presence of measurement and model errors, provided that these model errors are 
sufficiently small. 

A parametric analysis was performed with variables: (1) the density of the sensor 
configuration with respect to the crack size, (2) the distance of cracks centre from the 
central sensor of a uniform 3 × 3 grid of strain sensors with respect to the crack size and 
(3) the difference between the crack orientation and the direction of the strain 
measurements. This analysis provided useful insight about the effect of these variables to 
the method’s accuracy, as well as the limits on which this methodology fails to identify 
the crack. Results showed that for / 10<aγ , where γ  is characteristic of the sensor grid 
and a is the half crack length, the methodology can completely identify a crack and the 
external static load for both cases of strain measurements xε , yε  in each sensor location 
and that of strain measurements perpendicular to the crack. For the case of strain 
measurements in a direction parallel to the crack, the values of / aγ  for estimating the 
crack parameters are significantly smaller. 

Optimal sensor configurations using the information entropy measure were also 
derived. A comparison between the case of optimal sensor configurations using sensors 
measuring strains xε  and yε  in an optimal location and the case of configurations with 
sensors placed at optimal locations measuring strains in an optimal direction β  was 
made. The latter case resulted in configurations that provided more informative data for 
the same number of sensors than the first case. Results also showed that the optimal 
measurement direction for all strain sensors is / 2π  or 3 / 2π  with respect to the crack 
orientation. This means that most of the information about the crack parameters is 
derived by strain measurements in a perpendicular direction with respect to the crack,  
a result also reinforced by the parametric analysis results. 

Both optimisation problems involved in crack identification and optimal sensor 
configuration methodologies were proven to have multiple local and global optima. Thus, 
the use of an effective optimisation algorithm is necessary. Evolutionary algorithms  
are used in order to estimate the neighbourhood of the global optimum, and then the 
algorithm is switched to a gradient-based optimisation algorithm that can converge 
quickly to the global optimum. The proposed hybrid optimisation algorithm is shown  
to be effective in avoiding local optima and locating the global one. However, in order  
to find the neighbourhood of the global optimum, evolutionary algorithms require a 
relatively large number of function evaluations and this makes the proposed approach 
computationally time-consuming. 

Despite the computational effort needed and the limitations as far as model and 
measurement errors are considered, the proposed identification methodology was proven 
to be able to detect a crack in a thin plate subject to far field static load, as well as to 
accurately identify the crack size and orientation. 
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